twitter Linkedin acp Contact Us

Read the Digital Magazine

Top Stories

Grid List

The new bioinsecticide from Bayer can be used in oilseed rape and cereals. (Image source: Bayer)

Agriculture

Global healthcare and nutrition company, Bayer announces its signing of an agreement with leader of crop protection solutions, AlphaBio Control, to secure a license for a new biological insecticide, targeted towards arable crops

Infestation by insects like the cabbage stem flea beetle (CSFB), can be devastating for oilseed rape crops throughout the growing season and even cause seedling death. Keeping this in mind, the new bioinsecticide has been designed for use against coleoptera insects like these. 

Moreover, by including it in a digitally-supported integrated pest management system, Bayer’s systems approach—which combines various solutions—will help to maximise the cost efficiencies of this new product. 

“We are delighted to license Bayer exclusive rights to our latest bioinsecticide which will significantly improve the choices available to arable farmers wishing to reduce the environmental impact of food production,” said general manager for AlphaBio Control, Marta Ruiz.

Moreover, the new insecticide also aligns with Bayer's commitment to help reduce the environmental impact of crop protection products by 30% by 2030. The initial launch of the product is planned for 2028. 

For more information, visit: www.bayer.com and www.alphabiocontrol.com

The researchers built a reaction chamber and devised a method that simulates and greatly accelerates methane's natural degradation process. (Image source: Michael Skov Jensen, SCIENCE/KU)

Cattle

A recent study led by the University of Copenhagen (UCPH) atmospheric chemistry professor, Matthew Stanley Johnson brought to the spotlight, a new method devised by researchers to eradicate low-concentration methane from air

A new Methane Eradication Photochemical System (MEPS) reaction chamber, comprising an elongated metal box with heaps of hoses and measuring instruments, was built. Using chlorine and energy from light, researchers were successful in removing methane from air at a greater speed and efficiency compared to its natural decomposition rate in the atmosphere. Inside the box, a chain reaction of chemical compounds takes place, which breaks down the methane and removes a large portion of the gas from air.

"Methane decomposes at a snail's pace because the gas isn’t especially happy about reacting with other things in the atmosphere," explained Johnson. "However, we have discovered that, with the help of light and chlorine, we can trigger a reaction and break down the methane roughly 100 million times faster than in nature."

The Intergovernmental Panel on Climate Change (IPCC) has determined that reducing methane gas emissions—which are considered to be 85 times more potent of a greenhouse gas than CO2—will immediately reduce the rise in global temperatures. 

With the development of their new MEPS reaction chamber, the researchers plan to connect the device to the ventilation system in a livestock barn, where it will behave as a methane cleaner. A 40 ft shipping container will soon arrive at the Department of Chemistry and will become a larger prototype of the reaction chamber that the researchers built in the laboratory. The UCPH spin-out company Ambient Carbon, started and now headed by Johnson is currently developing the MEPS technology and plans to make it available to society in the near future. 

For more information, visit: https://science.ku.dk/

Monarch MK-V tractor demonstrating V2G through Borg Warner DCFC and Gridtractor CMS. (Image source: Gridtractor)

Equipment

Gridtractor, Monarch Tractor, and Borg Warner have achieved a significant milestone by successfully demonstrating Vehicle-to-Grid (V2G) capabilities utilising a Monarch MK-V tractor, a Borg Warner 60 kW DC fast charger, and Gridtractor’s cloud-based charge management system employing the Open Charge Point Protocol (OCPP) 

NPHarvest’s hardware can catch up to 90% of the excess but valuable nutrients from wastewater. (Image source: NPHarvest)

Machinery & Equipment

Finnish startup, NPHarvest has raised US$2.2mn to take its proprietary nutrient catcher machine to the market

While nutrient fertilisers are essential for securing food production, excessive amounts of fertilisers—particularly nitrogen and phosphorus—which end up in the environment through wastewater or nutrient leaching from agricultural areas, pollute the ground and cause eutrophication in seas and lakes. This in turn causes an overgrowth of algae and weeds, especially toxic blue-green algae, which depletes oxygen and is a threat to animal life. Overaccumulation of nutrients might also result in nutrient deficiencies in plants. 

NPHarvest's nutrient catcher which is installed in wastewater management systems, enables the separation and collection of excess nutrients from concentrated wastewaters. These can then be recycled and sold back to the fertiliser industry, thus making businesses more profitable, mitigating eutrophication and enhancing local food security. The hardware can catch up to 90% of the excess but valuable nutrients from wastewater. Once the technology has separated the nutrients, they can be taken back to the fertiliser companies. NPHarvest’s process also uses very little energy, as it does not require heating or pressure increase, thereby reducing the costs of the process even further.

The new funding will allow NPHarvest to build the first commercially ready nutrient catcher, ready to be installed in their clients’ facilities. Moreover, by keeping the production costs as low as possible, the nutrient catcher can scale to different use cases and fit different facilities, thanks to the process' modular design. 

“No one has done nutrient catching on a real commercial level, which made us as foodtech investors impressed with NPHarvest and its unique technology," said Mika Kukkurainen, partner at Nordic Foodtech VC. "Ensuring food security while protecting the environment is one of the top priorities in the food system. NPHarvest´s technology has what it takes to combine these aspects in a very interesting business model.”  

Development engineer of Swedish NSVA, Northwest Skåne Water and Wastewater, Hamse Kjerstadius also stated that NPHarvest’s technology for nitrogen and phosphorus recovery had the potential to allow increased nutrient recovery from wastewater. This was seen as a promising method that could aid municipalities in reaching reduced climate impacts.

For more information, visit: http://npharvest.fi/

Most Read

Latest news